Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 973: 176564, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38614383

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.

2.
Exp Neurol ; 377: 114781, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636773

RESUMEN

Chronic hypoxia in utero causes intrauterine growth restriction (IUGR) of the fetus. IUGR infants are known to be at higher risk for neurodevelopmental disorders, but the mechanism is unclear. In this study, we analyzed the structure of the cerebral cortex using IUGR model rats generated through a reduced uterine perfusion pressure operation. IUGR rats exhibited thinner cerebral white matter and enlarged lateral ventricles compared with control rats. Expression of neuron cell markers, Satb2, microtubule-associated protein (MAP)-2, α-tubulin, and nestin was reduced in IUGR rats, indicating that neurons were diminished at various developmental stages in IUGR rats, from neural stem cells to mature neurons. However, there was no increase in apoptosis in IUGR rats. Cells positive for Ki67, a marker of cell proliferation, were reduced in neurons and all glial cells of IUGR rats. In primary neuron cultures, axonal elongation was impaired under hypoxic culture conditions mimicking the intrauterine environment of IUGR infants. Thus, in IUGR rats, chronic hypoxia in utero suppresses the proliferation of neurons and glial cells as well as axonal elongation, resulting in cortical thinning and enlarged lateral ventricles. Thrombopoietin (TPO), a platelet growth factor, inhibited the decrease in neuron number and promoted axon elongation in primary neurons under hypoxic conditions. Intraperitoneal administration of TPO to IUGR rats resulted in increases in the number of NeuN-positive cells and the area coverage of Satb2. In conclusion, suppression of neuronal proliferation and axonal outgrowth in IUGR rats resulted in cortical thinning and enlargement of lateral ventricles. TPO administration might be a novel therapeutic strategy for treating brain dysmaturation in IUGR infants.

3.
Biochem Biophys Res Commun ; 708: 149789, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38513475

RESUMEN

The tumor suppressor p53 prevents cancer development by regulating dozens of target genes with diverse biological functions. Although numerous p53 target genes have been identified to date, the dynamics and function of the regulatory network centered on p53 have not yet been fully elucidated. We herein identified inhibitor of DNA-binding/differentiation-3 (ID3) as a direct p53 target gene. p53 bound the distal promoter of ID3 and positively regulated its transcription. ID3 expression was significantly decreased in clinical lung cancer tissues, and was closely associated with overall survival outcomes in these patients. Functionally, ID3 deficiency promoted the metastatic ability of lung cancer cells through its effects on the transcriptional regulation of CDH1. Furthermore, the ectopic expression of ID3 in p53-knockdown cells restored E-cadherin expression. Collectively, the present results demonstrate that ID3 plays a tumor-suppressive role as a downstream effector of p53 and impedes lung cancer cell metastasis by regulating E-cadherin expression.


Asunto(s)
Neoplasias Pulmonares , Humanos , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Regulación de la Expresión Génica , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Neoplasias Pulmonares/patología , Proteínas de Neoplasias/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
4.
Chem Commun (Camb) ; 60(8): 968-971, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38165681

RESUMEN

This study explores a new method for delivering therapeutic proteins into specific cells using OLE-ZIP capsules that present IgG. OLE-ZIP capsules is a spherical caspules prepared from amphihilic dimetic coiled-coil peptide, OLE-ZIP. Upon presenting cetuximab, these capsules showed preferential uptake in A431 cells and increased cytotoxicity when loaded with RNase A.


Asunto(s)
Inmunoglobulina G , Péptidos , Citoplasma
5.
J Biochem ; 175(3): 253-263, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-37948630

RESUMEN

Cardiac glycosides (CGs) have been used for decades to treat heart failure and arrhythmic diseases. Recent non-clinical and epidemiological findings have suggested that CGs exhibit anti-tumor activities. Therefore, CGs may be repositioned as drugs for the treatment of cancer. A detailed understanding of the anti-cancer mechanisms of CGs is essential for their application to the treatment of targetable cancer types. To elucidate the factors associated with the anti-tumor effects of CGs, we performed transcriptome profiling on human multiple myeloma AMO1 cells treated with periplocin, one of the CGs. Periplocin significantly down-regulated the transcription of MYC (c-Myc), a well-established oncogene. Periplocin also suppressed c-Myc expression at the protein levels. This repression of c-Myc was also observed in several cell lines. To identify target proteins for the inhibition of c-Myc, we generated CG-resistant (C9) cells using a sustained treatment with digoxin. We confirmed that C9 cells acquired resistance to the inhibition of c-Myc expression and cell proliferation by CGs. Moreover, the sequencing of genomic DNA in C9 cells revealed the mutation of D128N in α1-Na/K-ATPase, indicating the target protein. These results suggest that CGs suppress c-Myc expression in cancer cells via α1-Na/K-ATPase, which provides further support for the anti-tumor activities of CGs.


Asunto(s)
Glicósidos Cardíacos , Humanos , Glicósidos Cardíacos/farmacología , Línea Celular , Proliferación Celular , Perfilación de la Expresión Génica , Adenosina Trifosfatasas
6.
Neurochem Res ; 49(3): 800-813, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38112974

RESUMEN

Therapeutic hypothermia (TH) provides neuroprotection. However, the cellular mechanisms underlying the neuroprotective effects of TH are not fully elucidated. Regulation of microglial activation has the potential to treat a variety of nervous system diseases. Transient receptor potential vanilloid 4 (TRPV4), a nonselective cation channel, is activated by temperature stimulus at 27-35 °C. Although it is speculated that TRPV4 is associated with the neuroprotective mechanisms of TH, the role of TRPV4 in the neuroprotective effects of TH is not well understood. In the present study, we investigated whether hypothermia attenuates microglial activation via TRPV4 channels. Cultured microglia were incubated under normothermic (37 °C) or hypothermic (33.5 °C) conditions following lipopolysaccharide (LPS) stimulation. Hypothermic conditions suppressed the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and the number of phagocytic microglia. AMP-activated protein kinase (AMPK)-NF-κB signaling was inhibited under hypothermic conditions. Furthermore, hypothermia reduced neuronal damage induced by LPS-treated microglial cells. Treatment with TRPV4 antagonist in normothermic culture replicated the suppressive effects of hypothermia on microglial activation and microglia-induced neuronal damage. In contrast, treatment with a TRPV4 agonist in hypothermic culture reversed the suppressive effect of hypothermia. These findings suggest that TH suppresses microglial activation and microglia-induced neuronal damage via the TRPV4-AMPK-NF-κB pathway. Although more validation is needed to consider differences according to age, sex, and specific central nervous system regions, our findings may offer a novel therapeutic approach to complement TH.


Asunto(s)
Antineoplásicos , Hipotermia , Fármacos Neuroprotectores , Humanos , FN-kappa B/metabolismo , Microglía/metabolismo , Canales Catiónicos TRPV/metabolismo , Fármacos Neuroprotectores/farmacología , Hipotermia/metabolismo , Lipopolisacáridos/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Óxido Nítrico/metabolismo
7.
Sci Rep ; 13(1): 22877, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38129484

RESUMEN

Transforming growth factor ß (TGF-ß) is a multifunctional cytokine that induces a diverse set of cellular processes principally through Smad-dependent transcription. Transcriptional responses induced by Smads are tightly regulated by Smad cofactors and histone modifications; however, the underlying mechanisms have not yet been elucidated in detail. We herein report lysine methyltransferase SET8 as a negative regulator of TGF-ß signaling. SET8 physically associates with Smad2/3 and negatively affects transcriptional activation by TGF-ß in a catalytic activity-independent manner. The depletion of SET8 results in an increase in TGF-ß-induced plasminogen activator inhibitor-1 (PAI-1) and p21 expression and enhances the antiproliferative effects of TGF-ß. Mechanistically, SET8 occupies the PAI-1 and p21 promoters, and a treatment with TGF-ß triggers the replacement of the suppressive binding of SET8 with p300 on these promoters, possibly to promote gene transcription. Collectively, the present results reveal a novel role for SET8 in the negative regulation of TGF-ß signaling.


Asunto(s)
Inhibidor 1 de Activador Plasminogénico , Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , Transducción de Señal/fisiología , Activación Transcripcional , Metilación , Proteína Smad2/genética , Proteína Smad2/metabolismo
8.
ACS Appl Bio Mater ; 6(12): 5493-5501, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37978057

RESUMEN

The emergence of new biodegradable cell-adhesion materials is an attractive topic in biomaterial chemistry, particularly for the development of cell incubation scaffolds and drug encapsulation materials used in in situ regenerative therapy. Shellac is a natural resin with unique film-forming properties and high miscibility with various chemicals, in addition to being biodegradable and nontoxic to biological systems. However, since native shellac does not adhere to mammalian cells, there have been no reports of using shellac to develop cell-adhesive biomaterials. In this study, we report on the development of cell-adhesive shellac derivatives through slight chemical modification. Shellac is a mixture of oligoesters that consists of hydroxyl fatty acids and resin acids, and therefore, all oligomers have one carboxylic acid group at the terminal. We discovered that a simple modification of hydrophobic chemical groups, particularly those containing aromatic groups in the ester form, could dramatically improve cell-adhesion properties for mammalian cells. Furthermore, by using photocleavable esters containing aromatic groups, we successfully endowed photoswitchable properties in cell adhesion. Given that shellac is a low-cost, biodegradable, and nontoxic natural resin, the modified shellacs have the potential to become new and attractive biomaterials applicable to in situ regenerative therapy.


Asunto(s)
Administración Financiera , Resinas de Plantas , Adhesión Celular , Resinas de Plantas/farmacología , Resinas de Plantas/química , Ésteres , Materiales Biocompatibles/farmacología
9.
Exp Cell Res ; 432(1): 113784, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37730144

RESUMEN

Atherosclerosis is a persistent inflammatory state that contributes significantly to cardiovascular disease, a primary cause of mortality worldwide. Enhanced lipid uptake by macrophages and their transformation into foam cells play a key role in the development of atherosclerosis. Recent studies using in vivo mouse models indicated that activation of AMPK has anti-atherosclerotic effects by upregulating the expression of cholesterol efflux transporters in foam cells and promoting cholesterol efflux. However, the pathway downstream of AMPK that contributes to elevated expression of cholesterol efflux transporters remains unclear. In this study, we found that activation of AMPK by AICAR and metformin inhibits foam cell formation via suppression of mTOR in macrophages. Specifically, activation of AMPK indirectly reduced the phosphorylation level of mTOR at Ser2448 and promoted the expression of cholesterol efflux transporters and cholesterol efflux. These inhibitory effects on foam cell formation were counteracted by mTOR activators. Metformin, a more nonspecific AMPK activator than AICAR, appears to inhibit foam cell formation via anti-inflammatory effects in addition to suppression of the mTOR pathway. The results of this study suggest that the development of new drugs targeting AMPK activation and mTOR inhibition may lead to beneficial results in the prevention and treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Metformina , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , Células Espumosas , Serina-Treonina Quinasas TOR/metabolismo , Metformina/farmacología , Metformina/metabolismo , Aterosclerosis/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo
10.
Curr Cancer Drug Targets ; 23(11): 837-842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37221685

RESUMEN

BACKGROUND: Neuroblastoma is one of the most common childhood solid tumors. Because tumor suppressor genes are often hypermethylated in cancers, DNA methylation has emerged as a target for cancer therapeutics. Nanaomycin A, an inhibitor of DNA methyltransferase 3B, which mediates de novo DNA methylation, reportedly induces death in several types of human cancer cells. OBJECTIVE: To study the antitumor activity of nanaomycin A against neuroblastoma cell lines and its mechanism. METHODS: The anti-tumor effect of nanaomycin A on neuroblastoma cell lines was evaluated based on cell viability, DNA methylation levels, apoptosis-related protein expression, and neuronal-associated mRNA expression. RESULTS: Nanaomycin A decreased genomic DNA methylation levels and induced apoptosis in human neuroblastoma cells. Nanaomycin A also upregulated the expression of mRNAs for several genes related to neuronal maturation. CONCLUSIONS: Nanaomycin A is an effective therapeutic candidate for treating neuroblastoma. Our findings also suggest that the inhibition of DNA methylation is a promising anti-tumor therapy strategy for neuroblastoma.


Asunto(s)
Naftoquinonas , Neuroblastoma , Humanos , Niño , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Naftoquinonas/farmacología , Naftoquinonas/uso terapéutico , Metilación de ADN , Línea Celular Tumoral
11.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769149

RESUMEN

Atherosclerosis can lead to cardiovascular and cerebrovascular diseases. Atherosclerotic plaque formation is promoted by the accumulation of inflammatory cells. Therefore, modulating monocyte recruitment represents a potential therapeutic strategy. In an inflammatory state, the expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) is upregulated in endothelial cells. We previously reported that miR-1914-5p in endothelial cells suppresses interleukin (IL)-1ß-induced ICAM-1 expression and monocyte adhesion to endothelial cells. However, whether monocyte miR-1914-5p affects monocyte recruitment is unclear. In this study, IL-1ß decreased miR-1914-5p expression in a human monocyte cell line. Moreover, miR-1914-5p inhibition enhanced adhesion to endothelial cells with the upregulation of macrophage-1 antigen (Mac-1), a counter-ligand to ICAM-1. Transmigration through the endothelial layer was also promoted with the upregulation of monocyte chemotactic protein-1 (MCP-1). Furthermore, a miR-1914-5p mimic suppressed IL-1ß-induced monocyte adhesion and transmigration in monocytes with Mac-1 and MCP-1 downregulation. Further investigation of miR-1914-5p in monocytes could lead to the development of novel diagnostic markers and therapeutic strategies for atherosclerosis.


Asunto(s)
Aterosclerosis , MicroARNs , Humanos , Monocitos/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Adhesión Celular/fisiología
12.
Cancers (Basel) ; 15(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36765693

RESUMEN

Genetic abnormalities induce the DNA damage response (DDR), which enables DNA repair at cell cycle checkpoints. Although the DDR is thought to function in preventing the onset and progression of cancer, DDR-related proteins are also thought to contribute to tumorigenesis, tumor progression, and drug resistance by preventing irreparable genomic abnormalities from inducing cell death. In the present study, the combination of ataxia telangiectasia-mutated serine/threonine kinase (ATM) and checkpoint kinase 1 (Chk1) inhibition exhibited synergistic antitumor effects and induced synergistic lethality in colorectal cancer cells at a low dose. The ATM and Chk1 inhibitors synergistically promoted the activation of cyclin-dependent kinase 1 by decreasing the phosphorylation levels of T14 and Y15. Furthermore, the combined treatment increased the number of sub-G1-stage cells, phospho-histone H2A.X-positive cells, and TdT-mediated dUTP nick-end labeling-positive cells among colon cancer cells, suggesting that the therapy induces apoptosis. Finally, the combined treatment exhibited a robust antitumor activity in syngeneic tumor model mice. These findings should contribute to the development of new treatments for colorectal cancer that directly exploit the genomic instability of cancer cells.

13.
Cells ; 11(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36497084

RESUMEN

The tumor suppressor p53 is a transcription factor that regulates the expression of dozens of target genes and diverse physiological processes. To precisely regulate the p53 network, p53 undergoes various post-translational modifications and alters the selectivity of target genes. Acetylation plays an essential role in cell fate determination through the activation of p53. Although the acetylation of p53 has been examined, the underlying regulatory mechanisms remain unclear and, thus, have attracted the interest of researchers. We herein discuss the role of acetylation in the p53 pathway, with a focus on p53 acetyltransferases and deacetylases. We also review recent findings on the regulators of these enzymes to understand the mode of p53 acetylation from a broader perspective.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Acetiltransferasas/metabolismo , Factores de Transcripción/metabolismo
14.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36015162

RESUMEN

Transcriptional coactivator with PDZ-binding motif (TAZ) is a downstream transcriptional regulator of the Hippo pathway that controls cell growth and differentiation. The aberrant activation of TAZ correlates with a poor prognosis in human cancers, such as breast and colon cancers. We previously demonstrated that TAZ inhibited the tumor suppressor functions of p53 and enhanced cell proliferation. Statins, which are used to treat dyslipidemia, have been reported to suppress the activity of TAZ and exert anti-tumor effects. In the present study, we focused on the regulation of p53 functions by TAZ and investigated whether statins modulate these functions via TAZ. The results obtained suggest that statins, such as simvastatin and fluvastatin, activated the transcriptional function of p53 by suppressing TAZ protein expression. Furthermore, co-treatment with simvastatin and anti-tumor agents that cooperatively activate p53 suppressed cancer cell survival. These results indicate a useful mechanism by which statins enhance the effects of anti-tumor agents through the activation of p53 and may represent a novel approach to cancer therapy.

15.
FEBS Lett ; 596(4): 465-478, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35076962

RESUMEN

The c-Myc oncoprotein is frequently overexpressed in human cancers and is essential for cancer cell proliferation. The dysregulation of ubiquitin-proteasome-mediated degradation is one of the contributing factors to the upregulated expression of c-Myc in human cancers. We herein identified USP17 as a novel deubiquitinating enzyme that regulates c-Myc levels and controls cell proliferation and glycolysis. The overexpression of USP17 stabilized the c-Myc protein by promoting its deubiquitination. In contrast, the knockdown of USP17 promoted c-Myc degradation and reduced c-Myc levels. The knockdown of USP17 also suppressed cell proliferation and glycolysis. Collectively, the present results reveal a novel role for USP17 in the regulation of c-Myc stability and suggest its potential as a therapeutic target for cancer treatment.


Asunto(s)
Endopeptidasas/genética , Glucólisis/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Células COS , Línea Celular Tumoral , Proliferación Celular/genética , Chlorocebus aethiops , Endopeptidasas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Humanos , Ácido Láctico/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
16.
Sci Rep ; 11(1): 9528, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947921

RESUMEN

The unfolded protein response (UPR) controls protein homeostasis through transcriptional and translational regulation. However, dysregulated UPR signaling has been associated with the pathogenesis of many human diseases. Therefore, the compounds modulating UPR may provide molecular insights for these pathologies in the context of UPR. Here, we screened small-molecule compounds that suppress UPR, using a library of Myanmar wild plant extracts. The screening system to track X-box binding protein 1 (XBP1) splicing activity revealed that the ethanol extract of the Periploca calophylla stem inhibited the inositol-requiring enzyme 1 (IRE1)-XBP1 pathway. We isolated and identified periplocin as a potent inhibitor of the IRE1-XBP1 axis. Periplocin also suppressed other UPR axes, protein kinase R-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). Examining the structure-activity relationship of periplocin revealed that cardiac glycosides also inhibited UPR. Moreover, periplocin suppressed the constitutive activation of XBP1 and exerted cytotoxic effects in the human multiple myeloma cell lines, AMO1 and RPMI8226. These results reveal a novel suppressive effect of periplocin or the other cardiac glycosides on UPR regulation, suggesting that these compounds will contribute to our understanding of the pathological or physiological importance of UPR.


Asunto(s)
Glicósidos Cardíacos/farmacología , Saponinas/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Periploca/química , Extractos Vegetales/farmacología , Empalme del ARN/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína 1 de Unión a la X-Box/metabolismo
17.
Bone Res ; 8(1): 41, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33298874

RESUMEN

Transforming growth factor-ß (TGF-ß) and bone morphogenetic protein (BMP) play important roles in bone metabolism. Smad ubiquitination regulatory factors (Smurfs) regulate TGF-ß/BMP signaling via ubiquitination, resulting in degradation of signaling molecules to prevent excessive activation of TGF-ß/BMP signaling. Though Smurf2 has been shown to negatively regulate TGF-ß/Smad signaling, its involvement in BMP/Smad signaling in bone metabolism has not been thoroughly investigated. In the present study, we sought to evaluate the role of Smurf2 in BMP/Smad signaling in bone metabolism. Absorbable collagen sponges containing 3 µg of recombinant human BMP2 (rhBMP2) were implanted in the dorsal muscle pouches of wild type (WT) and Smurf2-/- mice. The rhBMP2-induced ectopic bone in Smurf2-/- mice showed greater bone mass, higher mineral apposition and bone formation rates, and greater osteoblast numbers than the ectopic bone in WT mice. In WT mice, the ectopic bone consisted of a thin discontinuous outer cortical shell and scant inner trabecular bone. In contrast, in Smurf2-/- mice, the induced bone consisted of a thick, continuous outer cortical shell and abundant inner trabecular bone. Additionally, rhBMP2-stimulated bone marrow stromal cells (BMSCs) from Smurf2-/- mice showed increased osteogenic differentiation. Smurf2 induced the ubiquitination of Smad1/5. BMP/Smad signaling was enhanced in Smurf2-/- BMSCs stimulated with rhBMP2, and the inhibition of BMP/Smad signaling suppressed osteogenic differentiation of these BMSCs. These findings demonstrate that Smurf2 negatively regulates BMP/Smad signaling, thereby identifying a new regulatory mechanism in bone metabolism.

18.
Antioxidants (Basel) ; 9(9)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916869

RESUMEN

Kurarinone, a flavonoid isolated from the roots of Sophora flavescens, was suggested to exert potent antioxidant and immunosuppressive effects. However, the underlying mechanisms remain unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates the antioxidant defense system with anti-inflammatory activity. In the present study, we demonstrated that kurarinone activated Nrf2 and increased the expression of antioxidant enzymes, including heme oxygenase-1 (HO-1). Mechanistically, kurarinone downregulated the expression of kelch-like ECH-associated protein 1 (KEAP1), subsequently leading to the activation of Nrf2. Kurarinone also inhibited the expression of the inflammatory cytokine, interleukin (IL)-1ß, and inducible nitric oxide synthase (iNos) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The overexpression of HO-1 suppressed the LPS-induced production of inflammatory mediators in RAW264.7 cells, and the immunosuppressive effects of kurarinone were partially inhibited by a treatment with Tin Protomorphyrin IX (TinPPIX), an inhibitor of HO-1. These results indicate that kurarinone activates the KEAP1/Nrf2 pathway to induce HO-1 expression, thereby exerting immunosuppressive effects.

19.
Bioconjug Chem ; 31(3): 821-833, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31940181

RESUMEN

Recently, development of techniques to deliver pharmacologically active biomacromolecules such as peptides and proteins to cytosol has gained much interest. Here, we applied the peptide gemini (PG)-surfactants to a novel platform to design cell penetration lipopeptides (CP-PGs), which can deliver exogenous peptides and proteins to cytosol. Among the number of candidate CP-PGs having different peptide sequences at the X-, Y-, and Z-positions, we focused on those having two C12 alkyl chains appended to the side chain of two Cys residues, the betaine sequence -Asp-Lys-Asp-Lys- between the alkylated Cys residues (i.e., at the X-position), and having different cationic peptide sequences of oligo-Lys or oligo-Arg at the Y- and/or Z-positions. With respect to cytotoxicity for mammalian cells such as NIH3T3 cells upon 1 h exposure, those having (Lys)3 (K3-DKDKC12 and DKCK12-K3) showed lower cytotoxicity (IC50 = 241 and 198 µM) among those having oligo-Lys, (Lys)n (n = 1, 3, 5; IC50 = 88-197 µM). Similar lower cytotoxicity was also observed for the CP-PG having two (Lys)3 at both N- and C-terminal sides (K3-DKDKC12-K3) (IC50 = 225 µM). In contrast, the CP-PG having (Arg)3 at the N-terminal side (R3-DKDKC12) showed higher cytotoxicity (IC50 = 88 µM). Carrier abilities of the CP-PGs for exogenous peptides were evaluated using the proapoptotic domain (PAD) peptide, which induces apoptosis by disturbing mitochondrial membranes after delivery into cytosol. As a result, the CP-PGs of K3-DKDKC12, DKCK12-K3, K3-DKDKC12-K3, DKCK12-K5, and R3-DKDKC12 exhibited micromolar range carrier ability (the necessary half concentration to induce cell death (EC50) by delivering PAD peptide to cytosol was 10, 6.2, 8.5, 5.8, and 11.5 µM, respectively). Especially, the carrier abilities of DKCK12-K3 and DKCK12-K5 were superior to the well-established cell penetration Arg-rich R8 peptide (EC50 = 6.8 µM). Together, our results indicate that the PG-surfactant molecular framework could be a potential new platform to design efficient cell penetration carrier materials.


Asunto(s)
Péptidos de Penetración Celular/química , Citosol/metabolismo , Portadores de Fármacos/química , Lipopéptidos/química , Tensoactivos/química , Secuencia de Aminoácidos , Animales , Ratones , Células 3T3 NIH
20.
Cells ; 9(1)2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31936650

RESUMEN

Transcriptional coactivator with a PDZ-binding motif (TAZ) is one of the mammalian orthologs of Drosophila Yorkie, a transcriptional coactivator of the Hippo pathway. TAZ has been suggested to function as a regulator that modulates the expression of cell proliferation and anti-apoptotic genes in order to stimulate cell proliferation. TAZ has also been associated with a poor prognosis in several cancers, including breast cancer. However, the physiological role of TAZ in tumorigenesis remains unclear. We herein demonstrated that TAZ negatively regulated the activity of the tumor suppressor p53. The overexpression of TAZ down-regulated p53 transcriptional activity and its downstream gene expression. In contrast, TAZ knockdown up-regulated p21 expression induced by p53 activation. Regarding the underlying mechanism, TAZ inhibited the interaction between p53 and p300 and suppressed the p300-mediated acetylation of p53. Furthermore, TAZ knockdown induced cellular senescence in a p53-dependent manner. These results suggest that TAZ negatively regulates the tumor suppressor functions of p53 and attenuates p53-mediated cellular senescence.


Asunto(s)
Senescencia Celular , Transactivadores/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Línea Celular , ADN/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Fibroblastos/metabolismo , Humanos , Modelos Biológicos , Unión Proteica , Transcripción Genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...